A constructive theory of point-set nearness
نویسندگان
چکیده
منابع مشابه
A constructive theory of point-set nearness
An axiomatic constructive development of the theory of nearness and apartness of a point and a set is introduced as a setting for topology.
متن کاملA First—order Constructive Theory of Nearness Spaces
A first—order axiomatic constructive development of the theory of nearness and apartness of a point and a set is introduced as a setting for constructive topology.
متن کاملElementary Constructive Operational Set Theory
We introduce an operational set theory in the style of [5] and [17]. The theory we develop here is a theory of constructive sets and operations. One motivation behind constructive operational set theory is to merge a constructive notion of set ([1], [2]) with some aspects which are typical of explicit mathematics [14]. In particular, one has non-extensional operations (or rules) alongside exten...
متن کاملNotes on Constructive Set Theory
4 Operations on Sets and Classes 25 4.1 Class Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Class Relations and Functions . . . . . . . . . . . . . . . . . . 26 4.3 Some Consequences of Union-Replacement . . . . . . . . . . . 27 4.4 Russell’s paradox . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5 Subset Collection and Exponentiation . . . . . . . . . . . . . . 30...
متن کاملCategorical semantics of constructive set theory
ion: If φ(x, y1, . . . , yn) is a bounded formula and a is a set, then so is {{x ∈ a : φ(x, y1, . . . , yn} : y1, . . . , yn ∈ x}. 2. Add bounded dependent choice, which is dependent choice for bounded formulas. 3. Weaking Full Induction to Induction: Induction: The set ω satisfies the induction axiom: if x is any set such that 0 ∈ x holds and n ∈ x implies n+ 1 ∈ x, then ω ⊆ x. It is last chan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2003
ISSN: 0304-3975
DOI: 10.1016/s0304-3975(02)00711-9